

"GRIDS"

Ground-based Remote Icing Detection System

Timothy Schneider NOAA-ETL

Acknowledgements:

- The GRIDS team, past, present & futureCarroll Campbell, technical lead.
- ❖FAA AWRP Sponsorship
- ❖NOAA-OAR subsidized

The NCAR Connection:

- ❖Presently: IFI-PDT, Marcia Politovich
- ❖01Oct04: AWRT-PDT, Kim Elmore

A Grab-Bag of Issues

- Move to AWRT
 - Other Applications
- ❖ NOAA-NWS funding
- Boulder labs consolidation
- AIRA Membership for NOAA
- Algorithm issues
- Spectra
- Temperature information
- All weather (RAIN!) operations
- AIRS2 & WISP04: Data processing; case studies
- Future plans...

ETLL ABOUT THE CHNOLOGY LABOUT THE CHNOLOGY LA

The GRIDS Design

Schematically speaking...

Based on proven technologies...

August 25, 2004

Slant-45 Quasi-Linear Polarization

Minimum crystal flutter sensitivity.

Very good separation by shape.

Drizzle vs. Ice differ though wide elevation arc.

Deterministic drizzle I.D. above cross-talk.

Sensitive to lower reflectivity clouds.

DR Measurements of Irregular Ice Crystals and Supercooled Drizzle

- * Design "Target" GRIDS: Completed Sept. '01
 - ***** Full sensitivity
 - **❖** Unattended 24/7/365 operations
 - **Real-time graphical output (2 min update)**
 - **Auto calibration and health**
 - **Zenith option (spectra!)**
- **❖ Build "Upgradable" GRIDS: Ongoing**
 - **❖** Fast-track effort
 - **Use target blueprint**
 - * "Borrow" components; less sensitive; not autonomous
 - **❖** Participated in AIRS2 (Nov-Dec '03); WISP04 (Feb-Apr, '04)
- * Evolve to "Target" GRIDS: FY06 FY07
 - **❖** Timeline is partner-dependent (FAA; NWS)
 - **Ends** with extended demo/assessment @ icing-prone airport

A WISP04 Case Study: Radiometer

A WISP04 Case Study: Radar (DR)

A WISP04 Case Study: Icing Alg.

An AIRS2 Case Study

TECHNOLOGY PECHNOLOGY PECHNOLOGY

Twin Otter: Icing near cloud top LWC $\sim 0.5 g/m^3$

NASA radiometer: LWP ~210-280 g/m²

17:00 Z sounding: T<0 C above 2.2 km

AIRS2 Case Study: Vertical Spectra

New Developments & Upgrades Part I

❖ RADS [GRADS

- i. GRADS software is built from existing RADS software, which has been in use for eight years in ground-based scanning and airborne systems;
- ii. offers high-resolution real-time displays of up to 32 meteorological parameters;
- iii. modular software design allows for easy addition of new capabilities;

❖ ["DIGI-GRADS"

- i. new Linux-based PC system is low cost;
- ii. digital receiver enhances dynamic range;
- iii. signal processing done on host Pentium (no DSP board required) is portable and scalable;
- iv. permits us to upgrade to spectral processing

New Developments & Upgrades Part II

New Developments & Upgrades Part III

